
Continuous-Depth Bayesian Neural Networks

Winnie Xu 1 Ricky T. Q. Chen 1 2 Xuechen Li 3 David Duvenaud 1 2 3

Abstract

Taking the infinitesimal limit of residual networks
gives neural networks whose hidden unit activa-
tions are governed by ordinary differential equa-
tions (ODEs). Uncertainty over the weights of
each of infinitely many layers endows Bayesian
neural networks whose hidden unit activations
are governed by stochastic differential equations
(SDEs). Building upon efficient algorithms for
gradient-based variational inference in SDEs, we
explore the use of infinite-dimensional stochastic
variational inference in this model. This approach
gives arbitrarily-expressive non-Gaussian approx-
imate posteriors. We also extend results from the
finite-dimensional case to yield gradient estima-
tors that achieve zero variance as the approximate
posterior approaches the true posterior.

1. Introduction
Bayesian neural networks are a principled approach
to handling uncertainty when training deep neural net-
works (MacKay, 1992; Hinton & Van Camp, 1993; Neal,
2012). Instead of performing maximum likelihood estima-
tion and obtaining only one set of weights, the Bayesian
paradigm frames learning as posterior inference. Specifi-
cally, given a data set DN of size N , we approximate the
posterior distribution over model weights w,

p(w|DN ) ∝ p(DN |w)p(w) (1)

where p(D|w) is the likelihood of observing the data set.
Here, we will assume a supervised learning setting, where
each data point consists of an independent variable x
and a dependent variable y. Assuming each data point
is independent, the likelihood then factors as p(D|w) =∏N
i=1 p(yi|xi, w). The posterior predictive distribution then
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Figure 1. Continuous transformation of the hidden state. Left: A
continuous-depth ODE network with deterministic transformation.
Right: Our SDE BNN performs Bayesian inference over time-
dependent weights of the ODE network, modeled as a stochastic
process. Both: Each black curve is for a separate initial state.
Percentiles are displayed for each initial state.

provides us with a distribution over predictions of unob-
served (test) data, by marginalizing over all possible param-
eter settings that fit the training set DN .

p(y|x,DN ) =

∫
w

p(y|x,w)p(w|DN ) dw (2)

However, the posterior distribution p(w|DN ) is generally
intractable for deep neural networks. In this work, we focus
on the variational approach, where we train a variational
posterior over the weights. This is typically done by mini-
mizing a Kullback–Leibler (KL) divergence using stochastic
gradient descent (SGD). Concretely, the training objective
is the evidence lower bound (ELBO):

L(φ) =NEw∼q(w),(x,y)∼DN [log p(y|x,w)]

− KL(q(w)||p(w)))
(3)

Maximizing this objective is equivalent to minimizing
KL(qφ(w)||p(w|DN )).

Variational inference (VI) turns posterior inference into a
stochastic optimization problem. One of the main technical
challenges of VI is choosing a parametric family of approxi-
mate posteriors qφ(w) that is tractable to sample from and
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evaluate, while being flexible enough to approximate the
true posterior well. Several works have proposed variational
posteriors which take into account a notion of “layers” as
building blocks of deep neural nets (Zhang et al., 2017;
Mishkin et al., 2018).

In this work, we take the limit of an infinitely-deep Bayesian
neural network, with separate weights for each layer. The
distribution over weights thus becomes a stochastic pro-
cess, as does the activation of the hidden units. Our result-
ing model is a generalization of the Neural ODE frame-
work (Chen et al., 2018). The prior p(w(·)) and and
variational posterior over weights qφ(w(·)) are parameter-
ized through stochastic differential equations, resulting in
stochastic processes. This approach yields the following
potential benefits:

1. The variational posterior can be made arbitrarily ex-
pressive, by simply making the dynamics that parame-
terize the SDE more expressive.

2. We can use adaptive black-box higher-order SDE
solvers to evaluate these infinitely-deep neural net-
works to any desired accuracy, adjustable at test time.

3. Using the recently developed stochastic adjoint
method (Li et al., 2020), we can effectively train using
O(1) memory cost.

2. Background
2.1. Neural Ordinary Differential Equations

Neural ODEs (Chen et al., 2018) parameterize the change in
activations through an ordinary differential equation (ODE).

dh(t) = f(h(t), t) dt (4)

where an initial value is typically chosen to be the indepen-
dent variable h(t0) = x. The output of the network is the
value of h at time t1,

h(t1) = h(t0) +

∫ t1

t0

f(h(t), t) dt (5)

If this integral is discretized using the Euler scheme, the dis-
cretization is the familiar residual network architecture (He
et al., 2016). However, if treated as a continuous transforma-
tion, this has some modeling and implementation benefits.

1. Adaptive computation time. With the use of adaptive
ODE solvers, the actual amount of compute varies de-
pending on the complexity of the ODE. This allows the
model to adapt its computation time to the complexity
of the data.

Figure 2. Samples from prior distribution over functions, using an
augmented hidden state to allow for non-monotonicity.

2. Constant-memory gradient computation. The adjoint
method allows computing gradients by solving a time-
reversed ODE. None of the internal activations need to
be stored, rendering this approach agnostic to the ODE
solver.

2.1.1. AUGMENTED NEURAL ODES

Since solutions of ODEs are constrained in the sense that
trajectories based on different initial values cannot intersect,
Dupont et al. (2019) suggested adding extra dimensions to
the ODE. This allows us to keep the benefits of continuous-
depth modeling while being expressive enough to model
arbitrary transformations (Zhang et al., 2019).

2.2. Stochastic Differential Equations

We specify a prior for the weights of an infinitesimally-
layered network using stochastic differential equations
(SDEs). SDEs can be written as:

dw(t) = f(w(t), t) dt+ g(w(t), t) dB(t) (6)

where B(t) is a Brownian motion, intuitively a continuous-
time random walk. Dependence of w(t) on the Brownian
motion means that w(t) is stochastic given w(t0).

Li et al. (2020) derived backwards-in-time stochastic ad-
joint equations for backpropagating through sample paths
of SDEs, conditioned on a Brownian motion sample B(t).
This provides an infinite-dimensional analogue of the “repa-
rameterization gradient” for training.

Furthermore, it can also be shown (Li et al., 2020) that if
p(w(t)) and q(w(t)) are both SDEs with the same diffusion
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coefficient g, then the log-density ratio log(p(w(·)/q(w(·))
can be computed for a given sample path w(·). This lets us
compute an unbiased estimate of the KL divergence between
the prior and posterior by another SDE integration:

KL(q||p) = Ew(·)∼q

[∫ t1

t0

1

2
|u(w(t), t)|2 dt

]
(7)

where u(w(t), t) satisfies

g(w(t), t)u(w(t), t) = fw(w(t), t)− fp(w(t), t) (8)

where fw(w(t), t) is the drift for qφ(w(·)) and fp(w(t), t)
is the drift for p(w(·)). This KL divergence is only finite
if the prior and posterior share the same diffusion function
g(w(t), t).

3. Infinitely deep Bayesian residual nets
Taking the infinitesimal limit of a residual network:

h(t+ ε) = h(t) + εfh(h(t), w(t), t) (9)

as ε → 0 gives a differential equation that describes the
hidden unit evolution as a function of depth, where depth is
indexed by time, t. The dynamics function fh is given by a
small neural network with weights w.

Prior process on weights Putting on a prior on the
weights of infinitely-many layers can be done by specificing
a stochastic process indexed by depth. For simplicity, we
place an Ornstein–Uhlenbeck (OU) process as the prior, i.e.

fp(w(t), t) = −w(t), gp(w(t), t) = σ (10)

where σ is a hyperparameter. The marginal distributions
w(t) are Gaussian distributed with zero mean and variance
σ2.

Approximate posterior process on weights We param-
eterize the approximate posterior on weights qφ(w(·)) im-
plicitly using another SDE:

fw(w(t), t, φ) = fp(w(t), t) + NN(w(t), t, φ),

gw(w(t), t) = σ
(11)

This SDE shares the same diffusion function as the prior.
Its drift function fw is parameterized by a small neural
network with weights φ. This posterior is non-Gaussian,
and its expressive capacity of the approximate posterior can
be made larger by increasing the size of fw. Figure 3 shows
2-dimensional marginals of the approximate posterior.

Evaluating the network Evaluating our network at a
given input requires sampling a weight path w(·) from the

Figure 3. Samples from bias slices fitted to a Gaussian KDE imply
non-Gassianity given an intial Gaussian prior (Brownian motion).
Multi-modality is difficult to show in high dimensional settings
(here, 5132 weights), thus it remains to be investigated whether
these features arise from sampling noise or otherwise.

approximate posterior, and evaluating the network activa-
tions h(·) given those weights and the input. Both steps
require solving a differential equation. Luckily, both steps
can be done simultaneously in a single call to an SDE solver:

d

[
w(t)
h(t)

]
=

[
fw(w(t), t, φ)
fh(h(t), w(t), t)

]
dt+

[
gw(w(t), t)

0

]
dB(t)

(12)

with h(0) = x and w(0) = w0 being learned.

Likelihood Our approach also requires placing a like-
lihood log p(y|x,w(·)) = log p(y|h(1)) on the output y
given the final activations h(1), for instance a Laplace like-
lihood for regression, or softmax. The parameters of this
likelihood can also be learned at training time.

Training objective We use gradient-based optimization
to maximize the infinite-dimensional ELBO:

L(φ) =Ew(·)∼qφ,(x,y)∼DN [log p(y|x,w(·))

−
∫ t1

t0

1

2
|u(w(t), t)|2 dt

] (13)

where u(w(t), t) = 1
σ (fw(w(t), t, φ)− fp(w(t), t)).

The sampled weights, the hidden activations, and the train-
ing objective are all computed simultaneously using a single
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Figure 4. Continuous-depth Bayesian neural networks can have ex-
pressive approximate posteriors. Blue shaded areas show posterior
percentiles, and colored lines show samples taken from the learned
approximate posterior.

call to an SDE solver.

3.1. Variance-reduced Gradients

Roeder et al. (2017) showed that when training with the
reparameterization gradient, a lower variance gradient es-
timator can be constructed by removing a score function
term that has expectation zero. The variance of this gradient
estimator approaches zero as the approximate posterior ap-
proaches the true posterior. We adapt this idea to the SDE
setting by replacing the original estimator of the KL with
the following surrogate objective∫ t1

t0

1

2
|u(w(t), t, φ)|2dt+

∫ t1

t0

u(w(t), t,sg(φ))dB(t),

where w(·) ∼ qφ(·), and sg(x) (the stop gradient
function) renders x a constant and with respect to which
gradient accumulation is stopped.

Because our approximate posterior qφ(w(·)) can be made
arbitrarily expressive, we conjecture that our approach can
achieve arbitrarily low gradient variance towards the end of
training if the network parameterizing fw is made expressive
enough. See Appendix 6.2 for a heuristic derivation.

4. Experiments
We demonstrate the SDE BNN and stochastic variational
inference framework on two supervised learning tasks. Dur-
ing training we averaged over 100 weight process samples
at each iteration.

4.1. Model Architecture

The approximate posterior drift fw is parameterized by a
two layer network with 64 hidden units. All layers are time
dependent and use the Swish activation (Ramachandran
et al., 2017). The posterior drift fw uses the same architec-
ture as the network for the dynamics drift fh. To stabilize
training, we initialized the posterior drift fw to be equal to
the prior drift by setting the parameters of last linear layer
in the neural network to zero.

4.2. Toy 1D data

Figure 4 shows that our model learns a reasonable approx-
imate posterior on a synthetic non-monotonic 1D dataset.
We augment our input by 2 extra dimensions (Dupont et al.,
2019) to provide additional sampling flexibility to our prior
process which improves overall performance. Without addi-
tional augmentation, the learned SDE-BNN can otherwise
only sample monotonic functions.

How expressive is the approximate posterior? The KL
divergence is only finite when the approximate posterior
diffusion is the same as the prior. This may seem like a
large limitation, but the state-dependent drift fh can make
the marginal variance arbitrarily small. Tzen & Raginsky
(2019a;b) provide universality results for this setting.

SDE Solvers In this initial work, we use a simple Euler-
Maruyama solver step size of 0.01, i.e.

st+1 = st + h(t)f(h(t), w(t), t) +
√
h(t)εg(w(t), t)

(14)

where ε ∼ N (0, 1). We use the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 1e-3. The diffusion
function is a constant taken to be 0.2 for the monotonic
problem and 0.5 for the non-monotonic.

5. Conclusion
We demonstrated that an infinitely deep Bayesian neural
network (Peluchetti & Favaro, 2019) may be trained with
an SDE framework. In particular, our method does approx-
imate inference by optimizing the ELBO while utilizing
reverse-mode auto-differentiation rather than doing so via a
rejection sampling method. We plan to adopt more compli-
cated adaptive SDE solvers with memory-efficient gradient
computation in the future for scaling up to higher dimen-
sional data. Our approach gives arbitrarily expressive non-
Gaussian approximate posteriors. This approach dovetails
with the variance reduction approach (Roeder et al., 2017)
to potentially give arbitrarily small gradients towards the
end of training. It also allows one to trade off evaluation
speed and numerical accuracy at test time.
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6. Appendix
Notation. Denote as φ the vector of variational parameters, fq as the approximate posterior on weights, fp as the prior on
weights, fh as the dynamics of hidden units, and σ as the diffusion function. Denote the Euclidean norm of a vector u by |u|.
For function f denote its Jacobian as∇f .

6.1. Derivation of an Alternative Monte Carlo Estimator

The goal of this section is to derive a Monte Carlo estimator of the KL-divergence on path space that is similar to the fully
Monte Carlo estimator described in (Roeder et al., 2017). This will serve as the basis for the subsequent heuristic derivation
of the continuous-time sticking-the-landing trick.

Letw0 be a fixed initial state. Letw1, ..., wN be states at times ∆t, 2∆t, . . . , N∆t = T generated by the Euler discretization:

wi+1 = wi + fq(wi)∆t+ σ(wi)(B(t+ ∆t)−B(t)) (15)

= wi + fq(wi)∆t+ σ(wi)∆t
1/2εi+1, εi+1 ∼ N (0, 1). (16)

where B(·) is the Brownian motion. This implies conditional on the previous state, the current state is normally distributed:

wi+1|wi ∼ N (wi + fq(wi)∆t, σ(wi)
2∆t).

Thus, the log-densities can be evaluated as

log q(wi+1|wi) = −1

2
log(2πσ(wi)

2∆t)− 1

2

(wi+1 − (wi + fq(wi)∆t))
2

σ(wi)2∆t
, i = 0, . . . N − 1. (17)

On the other hand, if at any time, the next state was generated from the current state based on the prior process, we would
have the following log-densities:

log p(wi+1|wi) = −1

2
log(2πσ(wi)

2∆t)− 1

2

(wi+1 − (wi + fp(wi)∆t))
2

σ(wi)2∆t
, i = 0, . . . N − 1. (18)

Now, we substitute the form of wi+1 based on (15) into the log-density equations (17) and (18) and obtain

log q(wi+1|wi) =− 1

2
log(2πσ(wi)

2∆t)− 1

2
ε2i+1,

log p(wi+1|wi) =− 1

2
log(2πσ(wi)

2∆t)− 1

2

(
(fq(wi)− fp(wi))2

σ(wi)2
∆t+

2(fq(wi)− fp(wi))εi+1

σ(wi)
∆t1/2 + ε2i+1

)
.

The KL divergence on the path space could then be regarded as a sum of infinitely many KL-divergences between Gaussians:

lim
N→∞

N∑
i=0

Ewi [KL (q(wi+1|wi)||p(wi+1|wi))] (19)

= lim
N→∞

N∑
i=0

Ewi
[
Ewi+1∼q(wi+1|wi)

[
log

q(wi+1|wi)
p(wi+1|wi)

]]
(20)

= lim
N→∞

N∑
i=0

Ewi
[
Eεi+1

[
(fq(wi)− fp(wi))2

2σ(wi)2
∆t+

(fq(wi)− fp(wi))
σ(wi)

∆t1/2εi+1

]]
(21)

= E

[
1

2

∫ T

0

|ut|2 dt+

∫ T

0

ut dBt

]
. (22)

6.2. Sticking-the-landing in Continuous Time

For a non-sequential latent variable model, the sticking-the-landing (STL) trick removes from the fully Monte Carlo ELBO
estimator a score function term of the form ∂ log q(w, φ)/∂φ, where w is sampled using the reparameterization trick and
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may depend on φ. The score function term has 0 expectation, but may affect the variance of the gradient estimator for the
inference distribution’s parameters.

Here, we exploit this intuition and apply it to each step before taking the limit. More precisely, we apply the STL trick to
estimate the gradient of KL(q(wi+1|wi)||p(wi+1|wi)) for i = 1, 2, . . . , N , and thereafter take the limit as the mesh size of
the discretization goes to 0. For each individual term, the score function term to be removed is

∂

∂φ
log q(wi+1|wi, φ) =− 1

2σ2(wi)∆t

∂

∂φ

[
(wi+1 − (wi + fq(wi, φ)∆t))

2
]

=
∂

∂φ

[
fq(wi, φ)

σ(wi)

]
εi+1∆t1/2.

Now, we sum up all of these terms and take the limit as ∆t→ 0. This gives us

lim
N→∞

N∑
i=0

Ewi
[
Ewi+1∼q(wi+1|wi)

[
∂

∂φ
log q(wi+1|wi)

]]
= lim
N→∞

N∑
i=0

Ewi
[
Eεi+1

[
∂

∂φ

[
fq(wi, φ)

σ(wi)

]
εi+1∆t1/2

]]

= E

[∫ T

0

∂

∂φ

[
fq(wt, φ)

σ(wt)

]
dBt

]

= E

[∫ T

0

∂

∂φ
[ut] dBt

]
.

Removing this term from the fully Monte Carlo estimator in (22) gives rise to the following estimator of a surrogate objective
that facilitates implementation:

ÊLBO = log p(Y |X, {wt}t∈[0,T ])−
∫ t1

t0

1

2
|u(wt, t, φ)|2 dt−

∫ t1

t0

u(wt, t,sg(φ)) dBt, w(·) ∼ qφ().


